/S /P /Type /StructElem /Pg 49 0 R /P 70 0 R 571 0 obj 81 0 obj endobj 130 0 obj /QuickPDFF41014cec 7 0 R /P 70 0 R << endobj 246 0 obj << /Alt () /Alt () /S /Span 227 0 obj /K [ 12 ] /Type /StructElem 155 0 obj /P 70 0 R << /Type /StructElem endobj << Graph Theory - Types of Graphs - There are various types of graphs depending upon the number of vertices, number of edges, interconnectivity, and their overall structure. /Type /StructElem /S /Figure /Type /StructElem /Type /StructElem << /P 70 0 R /S /Figure /Pg 41 0 R << endobj /Alt () 206 0 obj << /Type /StructElem 317 0 obj /Type /StructElem /P 70 0 R >> /K [ 62 ] << /S /Figure >> << /Alt () << >> /K [ 51 ] 235 0 obj /Pg 41 0 R 154 0 obj /Alt () 298 0 R 297 0 R 296 0 R 295 0 R 294 0 R 293 0 R 292 0 R 291 0 R 290 0 R 289 0 R 288 0 R 104 0 obj /K [ 138 ] /Pg 39 0 R << /K [ 37 ] /P 70 0 R 530 0 obj /Alt () /F4 14 0 R /K [ 78 ] >> /S /InlineShape However, an edge-transitive graph need not be symmetric, since a — b might map to c — d, but not to d — c. Star graphs are a simple example of being edge-transitive without being vertex-transitive or symmetric. 610 0 obj /Pg 45 0 R 318 0 obj endobj endobj 164 0 obj >> /K [ 60 ] 399 0 obj /Pg 41 0 R /QuickPDFFaa749e3f 14 0 R /K [ 131 ] /Pg 43 0 R The edges have weights of 100 and 200. << /P 70 0 R >> /P 70 0 R /S /P /Type /StructElem << /K [ 71 0 R 74 0 R 75 0 R 76 0 R 77 0 R 78 0 R 79 0 R 80 0 R 81 0 R 82 0 R 83 0 R 84 0 R /K [ 28 ] >> /Pg 47 0 R /Alt () /Type /StructElem /P 70 0 R /Pg 47 0 R /P 70 0 R >> /Alt () /Type /StructElem /InlineShape /Sect /K [ 18 ] /K [ 7 ] /P 70 0 R /Type /StructElem /Type /StructElem /S /Figure /P 70 0 R /K [ 169 ] >> 203 0 obj /K [ 1 ] >> /Type /StructElem /Pg 41 0 R endobj /Type /StructElem /K [ 21 ] << endobj /Alt () /Alt () /S /Figure >> << endobj >> endobj /K [ 15 ] 666 0 obj /P 70 0 R /Type /StructElem Introduction: Since every Let be a complete 546 0 obj 130 0 R 131 0 R 132 0 R 157 0 R 178 0 R 204 0 R 205 0 R 206 0 R 234 0 R 203 0 R 196 0 R << << /Pg 45 0 R /S /P >> /P 70 0 R << >> >> >> /QuickPDFF1d1252b2 34 0 R /Pg 41 0 R /P 70 0 R /S /Figure endobj >> For the digraph a ---> b ---> c we can check that symmetric, transitive, and symmetric transitive closures are all different. >> 374 0 obj /Type /StructElem endobj >> /K [ 24 ] endobj /S /Figure 673 0 obj << /S /Figure 508 0 obj /Type /StructElem /K [ 66 ] /Alt () 373 0 obj /K [ 154 ] endobj /Type /StructElem >> /S /P /Footnote /Note endobj /Type /StructElem /Type /StructElem endobj /Type /StructElem /Alt () /P 70 0 R /Pg 39 0 R /Alt () /Pg 49 0 R /P 70 0 R /Alt () /P 70 0 R /Type /StructElem /Type /StructElem /Type /StructElem 329 0 obj /K [ 141 ] << /Type /StructElem /S /Figure 474 0 R 475 0 R 476 0 R 477 0 R 478 0 R 479 0 R 480 0 R 481 0 R 482 0 R 483 0 R 484 0 R /S /Figure << >> /Pg 43 0 R >> endobj endobj /S /Figure /K [ 173 ] endobj /S /Figure /P 70 0 R 621 0 obj /Pg 41 0 R /K [ 140 ] << >> 679 0 obj 623 0 obj /K [ 135 ] >> >> << endobj /Pg 39 0 R >> /S /Figure /Alt () /P 70 0 R 255 0 obj /Alt () >> /Type /StructElem >> 146 0 obj /Type /StructElem /Alt () << >> 548 0 obj 447 0 obj /MarkInfo << endobj endobj /P 70 0 R /Type /StructElem /P 70 0 R /S /P /K [ 78 ] /S /Figure /P 70 0 R >> /P 70 0 R >> endobj >> /Type /StructElem >> endobj /S /Figure /Alt () endobj >> /S /Figure /Pg 43 0 R << /P 70 0 R 593 0 obj /K [ 148 ] /K [ 38 ] /K [ 12 ] endobj /Type /StructElem >> /Type /StructElem /S /Figure /K [ 108 ] /Type /StructElem /Pg 41 0 R /Pg 39 0 R /P 70 0 R 96 0 obj 119 0 obj /Type /StructElem /K [ 87 ] /Alt () /Type /StructElem /Alt () << /Type /StructElem /Alt () /Pg 41 0 R << sarily symmetric (that is, it may be that AT G ⁄A G). /K [ 120 ] /P 70 0 R /Type /StructElem endobj /K [ 43 ] /S /P endobj << /Pg 43 0 R /K [ 21 ] /Pg 41 0 R /P 70 0 R << /Pg 39 0 R /Pg 39 0 R /Pg 41 0 R /Type /StructElem /Type /StructElem << /K [ 95 ] endobj /S /P endobj /P 70 0 R endobj /Type /StructElem >> endobj << endobj /K [ 14 ] /Pg 41 0 R /S /Figure << /Alt () /S /Figure /Type /StructElem endobj /S /Figure /P 70 0 R /S /P >> 308 0 obj /P 70 0 R /Pg 47 0 R /S /Figure /P 70 0 R /Type /StructElem << /Alt () >> endobj >> /Alt () endobj /Type /StructElem /Pg 41 0 R endobj >> /S /P /S /P /P 70 0 R /Pg 3 0 R /P 70 0 R /Type /StructElem /Pg 43 0 R /P 70 0 R endobj ] /S /P 461 0 obj /Alt () /P 70 0 R << /Type /StructElem /QuickPDFFb718829b 9 0 R 252 0 obj 344 0 obj >> /P 70 0 R << endobj /Type /StructElem endobj endobj 330 0 obj /P 70 0 R /Pg 43 0 R /CS /DeviceRGB >> /Type /StructElem endobj … << /K [ 137 ] /Pg 41 0 R /P 70 0 R /NonFullScreenPageMode /UseNone << /Type /StructElem /Alt () endobj /P 70 0 R endobj /Pg 43 0 R >> 563 0 R 564 0 R 565 0 R 566 0 R 567 0 R 568 0 R 569 0 R 570 0 R 571 0 R 572 0 R 573 0 R /Type /StructElem << /Alt () /P 70 0 R << >> << endobj /S /Figure << /S /Sect /S /Figure /K [ 166 ] /S /Figure 356 0 obj /P 70 0 R /Pg 49 0 R /P 70 0 R endobj >> endobj >> /K [ 25 ] /Alt () /K [ 41 ] /S /P 550 0 obj /P 70 0 R /Pg 49 0 R >> /Pg 39 0 R 302 0 obj << 323 0 R 313 0 R 322 0 R 312 0 R 321 0 R 344 0 R 320 0 R 311 0 R 334 0 R 343 0 R 310 0 R /Type /StructElem << /Pg 39 0 R /Pg 39 0 R << /P 654 0 R /K [ 56 ] /Alt () endobj /PageMode /UseNone endobj /P 70 0 R << << /Pg 43 0 R So each U j is an r-coloured complete symmetric digraph such that, for all i ∈ [r − 1], every path of colour i has length at most ℓ i − 1. << /P 70 0 R /Pg 41 0 R /K [ 78 ] /Alt () endobj /Pg 41 0 R /Type /StructElem 597 0 obj /Pg 39 0 R /Pg 43 0 R 221 0 obj >> endobj /Alt () /Alt () endobj endobj /Pg 49 0 R /Type /StructElem << /P 669 0 R endobj /Pg 43 0 R /Type /StructElem /Pg 43 0 R endobj 294 0 obj /Pg 41 0 R 222 0 obj /Pg 47 0 R /Alt () >> /Pg 49 0 R << endobj /S /Figure 216 0 obj << /Alt () endobj /Pg 39 0 R /S /Figure /S /P endobj endobj /Pg 43 0 R 273 0 obj /Alt () /Pg 47 0 R /Type /StructElem /S /Figure /K [ 121 ] /K [ 106 ] << /Pg 43 0 R /Alt () /Pg 45 0 R /K [ 43 ] 264 0 R 265 0 R 266 0 R 267 0 R 268 0 R 269 0 R 270 0 R 271 0 R 272 0 R 273 0 R 274 0 R 92 0 obj /S /Figure /Pg 41 0 R /K [ 177 ] /Type /StructElem << /Pg 41 0 R /Pg 43 0 R /Pg 61 0 R /Pg 49 0 R /K [ 130 ] /S /Figure /Pg 39 0 R In fact, the only way a relation can be both symmetric and antisymmetric is if all its members are of the form $(x,x)$, like in the example you give. /Type /StructElem /P 70 0 R /Type /StructElem << >> 249 0 obj endobj /S /P /K [ 161 ] endobj /K 33 502 0 obj 256 0 obj /Alt () /Type /StructElem >> >> /Type /StructElem endobj endobj /K [ 25 ] 169 0 obj 224 0 obj >> >> /P 70 0 R /S /P endobj 124 0 obj /K [ 20 ] 407 0 obj endobj endobj /Type /StructElem >> /K 0 /K [ 46 ] /K [ 165 ] /S /Figure /Type /StructElem /Alt () >> >> /S /Figure endobj /K [ 13 ] /Type /StructElem /Type /StructElem The Digraph Lattice Charles T. Gray April 17, 2014 Abstract Graph homomorphisms play an important role in graph theory and its ap-plications. endobj >> /Pg 49 0 R << /Type /StructElem << >> /Pg 45 0 R endobj /Alt () /Pg 39 0 R Theorder. 233 0 obj /K [ 70 ] %���� >> /Pg 45 0 R and the size of a graph (or digraph) H are jV(H)j and jE(H)j, respectively. For a graph (or digraph) H, let V(H) and E(H) denote the vertex set ofH and the edge (or arc) set ofH, respectively. 489 0 obj << /Chartsheet /Part endobj >> /Nums [ 0 72 0 R 1 109 0 R 2 257 0 R 3 440 0 R 4 536 0 R 5 580 0 R 6 622 0 R 7 675 0 R /K [ 22 ] /Type /StructElem /K [ 66 ] /P 70 0 R endobj << /Type /StructElem endobj << endobj We denote the complete multipartite graph with parts of sizes aifor 1 . >> /S /Figure << << endobj /Type /StructElem /Type /StructElem << 117 0 obj /P 70 0 R /Pg 41 0 R /K [ 35 ] endobj /Pg 39 0 R /Alt () /S /Figure /Alt () /Pg 41 0 R /Pg 49 0 R << endobj /S /Figure /K [ 22 ] /P 70 0 R /Type /StructElem /K [ 104 ] /Type /StructElem /S /P /Pg 39 0 R << /K [ 20 ] /Type /StructElem /QuickPDFF87c587fd 26 0 R /Type /StructElem >> endobj /Type /StructElem >> >> >> << >> /K [ 162 ] endobj /K [ 80 ] /F10 32 0 R /Pg 49 0 R /K [ 164 ] >> << /P 70 0 R /S /Figure /P 70 0 R /K [ 9 ] /S /Figure 313 0 obj /Type /StructElem /P 70 0 R /K [ 157 ] >> >> /S /Figure >> << /P 67 0 R /P 70 0 R /P 70 0 R /K [ 49 ] /Alt () << /K [ 143 ] >> /S /P /Pg 39 0 R /Alt () 84 0 obj /S /Figure >> /S /Figure /P 70 0 R endobj /S /Figure /Alt () /K [ 130 ] << /S /P 674 0 obj /P 70 0 R /Type /StructElem /K [ 16 ] /Pg 49 0 R endobj /Type /StructElem /Alt () /S /P /Type /StructElem endobj << /K [ 26 ] /S /Figure /S /Figure endobj /P 70 0 R /Pg 39 0 R endobj /Type /StructElem /S /InlineShape /P 70 0 R /Workbook /Document /K [ 15 ] endobj /Alt () /K [ 8 ] << /Pg 39 0 R /S /Figure >> /Type /StructElem endobj /Pg 43 0 R /S /Figure /K [ 62 ] /K [ 9 ] /Type /StructElem << 357 0 obj /Alt () /P 70 0 R /Type /StructElem 492 0 obj >> /Type /StructElem /P 70 0 R 75 0 obj /Alt () /Pg 47 0 R << >> /Pg 3 0 R endobj >> /K [ 21 ] /Pg 39 0 R /Pg 39 0 R /Pg 43 0 R /K [ 95 ] /K [ 102 ] /S /P /Type /StructElem /K [ 167 ] /S /P endobj >> /Type /StructElem endobj /Type /StructElem /S /P 458 0 obj /S /Figure endobj /Pg 49 0 R 559 0 obj Symmetric directed graphs are directed graphs where all edges are bidirected (that is, for every arrow that belongs to the digraph, the corresponding inversed arrow also belongs to it). /Pg 41 0 R /Type /StructElem >> endobj /S /Figure /K [ 37 ] /Type /StructElem /S /Figure endobj /S /Figure /P 70 0 R << /K [ 6 ] /K [ 11 ] /Type /StructElem /S /Figure /K [ 110 ] 176 0 obj 3 0 obj 528 0 obj /Type /StructElem /S /Figure 198 0 obj endobj 293 0 obj >> /Pg 41 0 R endobj /Pg 49 0 R >> /K [ 7 ] /Alt () /P 70 0 R >> /Pg 49 0 R 263 0 obj /Type /StructElem /S /Figure endobj 404 0 obj /K [ 32 ] << /P 70 0 R /S /Figure << 304 0 obj /S /P << /K [ 23 ] endobj /K [ 107 ] /Pg 41 0 R /K [ 39 ] 323 0 obj endobj Keywords: Congruence, Digraph, Component, Height, Cycle 1. >> /Pg 41 0 R << /P 70 0 R 632 0 R 633 0 R 634 0 R 635 0 R 636 0 R 637 0 R 638 0 R 639 0 R 640 0 R 641 0 R 642 0 R >> 495 0 obj /P 70 0 R /P 70 0 R /P 70 0 R 547 0 obj /Type /StructElem /S /Figure /Pg 41 0 R /S /Figure /P 70 0 R /Pg 43 0 R << /Type /StructElem /Type /StructElem << >> << /Type /StructElem /K [ 32 ] 144 0 obj 337 0 obj >> /Type /StructElem << << /P 70 0 R >> /S /Figure /P 70 0 R /Type /StructElem /K [ 28 ] /Type /StructElem 511 0 obj /K [ 3 ] /Pg 41 0 R /P 70 0 R 368 0 obj /P 70 0 R endobj When the cycles are anti-directedp must be odd. /Pg 39 0 R >> /S /Figure 314 0 obj /K [ 159 ] /S /Figure /Type /StructElem >> /Type /StructElem /K [ 61 ] /Type /StructElem /Pg 43 0 R >> 583 0 obj /P 669 0 R 122 0 obj /S /Figure /Pg 45 0 R /S /Figure /Type /StructElem /P 70 0 R 671 0 obj endobj /S /Figure /Pg 49 0 R /Pg 43 0 R >> << >> << /K [ 44 ] 363 0 obj << 524 0 obj >> /S /P /Type /StructElem >> /S /Figure /K [ 14 ] endobj >> << >> /P 70 0 R /Type /StructElem /Type /StructElem endobj endobj /S /P /Type /StructElem /S /P /K [ 16 ] << /Alt () endobj /P 70 0 R /S /P endobj /Pg 39 0 R 592 0 obj << /Pg 39 0 R /Type /StructElem /K [ 19 ] << /K [ 77 ] /P 70 0 R 145 0 obj 419 0 obj >> /P 70 0 R >> /S /Figure /Type /StructElem 687 0 R 688 0 R 689 0 R 690 0 R 691 0 R 692 0 R 693 0 R 694 0 R 695 0 R 696 0 R 697 0 R /Pg 39 0 R /K [ 75 ] /S /P /Type /StructElem << >> << /S /Figure >> endobj 91 0 obj 690 0 obj /P 70 0 R /S /Figure /Alt () 266 0 obj << 670 0 obj /Type /StructElem /Alt () << endobj 681 0 obj >> >> /P 70 0 R /K [ 151 ] /P 70 0 R /Pg 45 0 R endobj /K [ 113 ] /P 70 0 R /K [ 6 ] /Pg 49 0 R endobj 105 0 obj 332 0 obj 680 0 obj << /ParentTree 69 0 R << /P 70 0 R /Pg 39 0 R << /K [ 8 ] endobj /P 70 0 R << endobj >> << /Alt () endobj >> << /K [ 69 ] << endobj /K [ 48 ] << /Pg 43 0 R /P 70 0 R /P 70 0 R << << << /S /Figure /K [ 11 ] /K [ 5 ] /P 70 0 R /Pg 39 0 R endobj /S /P /K 8 >> >> endobj /P 669 0 R /Alt () endobj << /Pg 41 0 R << /K [ 76 ] /Pg 41 0 R endobj /Type /StructElem << /Alt () << /Type /StructElem /Alt () 438 0 obj /K [ 147 ] /P 70 0 R /K [ 44 ] /P 70 0 R >> /Pg 41 0 R endobj endobj /K [ 45 ] /Type /StructElem 362 0 obj >> /Alt () /S /Figure >> /Alt () /Alt () /P 70 0 R /S /P /Type /StructElem >> >> >> /S /P >> >> endobj endobj /Pg 41 0 R /P 70 0 R << /P 70 0 R << /Type /StructElem /K [ 25 ] >> /K [ 109 ] /Alt () 367 0 obj << 638 0 obj endobj << endobj /Pg 61 0 R endobj /K [ 61 ] endobj << 509 0 obj 401 0 obj /Pg 39 0 R /P 70 0 R /Alt () /K [ 20 ] >> /Alt () /P 70 0 R >> /K [ 11 ] endobj /Pg 43 0 R [ 256 0 R 279 0 R 280 0 R 281 0 R 282 0 R 309 0 R 317 0 R 326 0 R 337 0 R 355 0 R >> /K [ 86 ] /P 70 0 R >> endobj << /Type /StructElem endobj /S /Figure >> >> /Type /StructElem /Pg 43 0 R /Pg 39 0 R endobj 598 0 R 599 0 R 600 0 R 601 0 R 602 0 R 603 0 R 604 0 R 605 0 R 606 0 R 607 0 R 608 0 R >> /Type /StructElem >> /P 70 0 R 342 0 obj << /Pg 39 0 R >> << /P 70 0 R /S /Figure /P 70 0 R /S /Span /S /Figure endobj /K [ 28 ] /Pg 43 0 R 237 0 R 236 0 R 235 0 R ] 618 0 obj /Pg 41 0 R endobj %PDF-1.5 /S /P >> /Pg 61 0 R /Pg 41 0 R << endobj /K [ 93 ] /S /P /P 70 0 R 396 0 R 397 0 R 398 0 R 399 0 R 400 0 R 401 0 R 402 0 R 403 0 R 404 0 R 405 0 R 406 0 R /Pg 41 0 R 587 0 obj /K [ 0 ] /K [ ] << /K [ 23 ] << /Type /StructElem /Type /StructElem /S /Span /Type /StructElem /P 70 0 R << /Type /StructElem /Alt () >> /P 70 0 R 531 0 obj /Type /StructElem /K [ 20 ] /S /P /K 37 /QuickPDFF2eb0e7ce 28 0 R /Type /StructElem 89 0 obj /P 70 0 R endobj /Alt () << 202 0 obj /S /Figure /K [ 122 ] /Pg 45 0 R /Alt () endobj >> >> /Pg 39 0 R /Type /StructElem /K [ 112 ] endobj /P 70 0 R /P 70 0 R /P 70 0 R /Parent 2 0 R /P 70 0 R /S /P /S /Figure endobj /Pg 41 0 R /K [ 59 ] /Pg 41 0 R /Type /StructElem >> >> /F3 12 0 R /P 70 0 R /K [ 18 ] << << /P 70 0 R /Type /StructElem /K [ 18 ] 320 0 obj << /K [ 1 ] /Alt () /Alt () << /P 70 0 R /Pg 43 0 R 335 0 obj /Alt () >> >> /Type /StructElem 166 0 obj /P 70 0 R /Alt () /Pg 43 0 R /K [ 64 ] << /K [ 67 ] /K [ 47 ] /Pg 49 0 R /K [ 15 ] /K [ 31 ] << << /Alt () /P 70 0 R endobj /S /P /Pg 49 0 R /S /Figure << /P 70 0 R /S /Figure >> >> /Pg 43 0 R /K [ 105 ] 514 0 obj << 520 0 obj 243 0 obj /Pg 43 0 R /K [ 82 ] /Alt () 349 0 obj << 467 0 obj /QuickPDFFaaab265b 54 0 R endobj /S /P /S /Figure >> << /Type /StructElem /K [ 38 ] /Pg 47 0 R 443 0 obj /K [ 59 ] << /Artifact /Sect /Pg 41 0 R endobj Oriented graphs: The directed graph that has no bidirected edges is called as oriented graph. /P 70 0 R /S /P /F9 30 0 R /Alt () endobj /K [ 94 ] /K [ 4 ] /S /P /P 70 0 R /Type /StructElem endobj /P 70 0 R /P 70 0 R >> << >> endobj << << /S /Figure /K [ 42 ] /P 70 0 R >> /P 70 0 R endobj /Alt () /P 70 0 R 364 0 obj /Type /StructElem >> /Type /StructElem << << /P 70 0 R endobj >> endobj 356 0 R 357 0 R 358 0 R 359 0 R 360 0 R 388 0 R 401 0 R 406 0 R 433 0 R 434 0 R 435 0 R /Pg 49 0 R /Type /StructElem endobj /Type /StructElem /K [ 54 ] >> /Type /StructElem endobj 639 0 obj /S /P /Alt () 205 0 obj /P 70 0 R /K [ 107 ] << /S /P /Pg 3 0 R /K [ 55 ] /K [ 105 ] >> /K [ 52 ] 517 0 obj /Dialogsheet /Part 230 0 obj endobj 299 0 obj /Pg 39 0 R /P 70 0 R /K [ 70 ] /Type /StructElem >> endobj /Pg 41 0 R << /Type /StructElem /P 70 0 R /Pg 39 0 R /Type /Action /Type /StructElem 118 0 obj /Pg 45 0 R /P 70 0 R 392 0 obj /Type /StructElem /Alt () /Alt () /K [ 32 ] /K [ 670 0 R 671 0 R 672 0 R ] >> You cannot create a multigraph from an adjacency matrix. 280 0 obj Solution: … 505 0 obj /P 70 0 R /K [ 32 ] /S /P endobj << /Type /StructElem Let us define Relation R on Set A = … /P 70 0 R /Pg 41 0 R /S /P endobj 441 0 R 442 0 R 443 0 R 444 0 R 445 0 R 446 0 R 447 0 R 448 0 R 449 0 R 450 0 R 451 0 R 295 0 obj /K [ 7 ] /S /Figure endobj /S /P >> /S /Figure [ 108 0 R 110 0 R 111 0 R 112 0 R 113 0 R 114 0 R 115 0 R 116 0 R 117 0 R 118 0 R /Pg 41 0 R >> /Pg 45 0 R /Pg 39 0 R >> 407 0 R 402 0 R 260 0 R 259 0 R 258 0 R ] << /Alt () /Type /StructElem 234 0 obj endobj 452 0 obj /S /P /P 70 0 R /Pg 39 0 R /P 70 0 R endobj /S /P /P 70 0 R /S /Figure << endobj /Pg 41 0 R << 570 0 obj 85 0 R 86 0 R 87 0 R 88 0 R 89 0 R 90 0 R 91 0 R 92 0 R 93 0 R 94 0 R 95 0 R 96 0 R 637 0 obj >> << /Alt () endobj /K [ 39 ] /P 70 0 R /Type /StructElem /P 70 0 R endobj << 586 0 obj 465 0 obj /Pg 41 0 R 223 0 obj /Type /StructElem /P 70 0 R /S /P /P 70 0 R /Pg 3 0 R /P 70 0 R /Alt () /S /Figure 560 0 obj /Alt () >> /Pg 49 0 R >> /P 70 0 R /S /Figure endobj /K [ 38 ] >> /Pg 3 0 R >> /Alt () /Pg 41 0 R >> /P 70 0 R /ProcSet [ /PDF /Text /ImageB /ImageC /ImageI ] /K [ 94 ] >> /P 70 0 R /Type /StructElem 329 0 R 328 0 R 327 0 R 404 0 R 403 0 R 400 0 R 399 0 R 363 0 R 398 0 R 397 0 R 396 0 R /S /P /Pg 41 0 R << << /Pg 3 0 R /S /P << 120 0 R 121 0 R 122 0 R 123 0 R 124 0 R 125 0 R 126 0 R 127 0 R 128 0 R 129 0 R 130 0 R 186 0 R 187 0 R 188 0 R 189 0 R 190 0 R 191 0 R 192 0 R 193 0 R 194 0 R 195 0 R 196 0 R endobj endobj << /K [ 10 ] >> << << /Pg 39 0 R /Type /StructElem /P 70 0 R /Alt () /K [ 655 0 R 656 0 R 657 0 R 658 0 R 659 0 R 660 0 R 661 0 R ] /S /Figure >> endobj << endobj /S /Figure .IJCA(12845-0234) Volume 73 Number 18 year 2013. >> 113 0 obj /S /P /Alt () /S /Figure /Alt () >> /S /P /Alt () /P 70 0 R 359 0 obj endobj /Pg 41 0 R /K [ 31 ] >> /Type /Pages endobj endobj /K [ 91 ] << >> /Pg 43 0 R /S /Figure >> /Type /StructElem /Type /StructElem /Type /StructElem /QuickPDFFdc4f7913 52 0 R 309 0 obj /Alt () >> /P 70 0 R 231 0 obj << /Type /StructElem 67 0 obj endobj 448 0 obj /K [ 91 ] /Pg 41 0 R 466 0 obj >> << << endobj >> << << /S /P /S /P /P 70 0 R /P 70 0 R /Type /StructElem /P 70 0 R /Pg 43 0 R /S /Figure /S /Figure /P 70 0 R /S /P 675 0 obj << /Type /StructElem >> /Pg 47 0 R /Type /StructElem /Pg 43 0 R /Type /StructElem /K [ 160 ] /Type /StructElem >> endobj /Type /StructElem /K [ 75 ] /K [ 84 ] /K [ 5 ] /Type /StructElem [ 674 0 R 677 0 R 676 0 R 679 0 R 681 0 R 680 0 R 683 0 R 685 0 R 684 0 R 686 0 R /Pg 39 0 R /S /Figure /Type /StructElem >> endobj 417 0 obj /P 70 0 R >> /P 70 0 R /S /Figure /Type /StructElem /Pg 39 0 R << /Type /StructElem >> /Pg 41 0 R << endobj /P 70 0 R /Pg 47 0 R For large graphs, the adjacency matrix contains many zeros and is typically a sparse matrix. /Type /StructElem >> /Type /StructElem /P 70 0 R 386 0 obj << /K [ 90 ] << /Type /StructElem /Pg 39 0 R << /Type /StructElem >> 363 0 R 364 0 R 365 0 R 366 0 R 367 0 R 368 0 R 369 0 R 370 0 R 371 0 R 372 0 R 373 0 R /Font << /K [ 125 ] /Type /StructElem endobj /P 70 0 R /S /P endobj << /Type /StructElem /K [ 94 ] 567 0 obj /K [ 98 ] << 175 0 R 176 0 R 177 0 R 178 0 R 179 0 R 180 0 R 181 0 R 182 0 R 183 0 R 184 0 R 185 0 R endobj /S /Figure /P 70 0 R >> /S /P 241 0 R 242 0 R 243 0 R 244 0 R 245 0 R 246 0 R 247 0 R 248 0 R 249 0 R 250 0 R 251 0 R << /Pg 39 0 R /Type /StructElem endobj 584 0 obj endobj /S /P /Pg 39 0 R /S /Figure /K [ 79 ] /Pg 47 0 R /P 70 0 R /S /P /S /Figure /Pg 41 0 R /K [ 86 ] 159 0 obj << 183 0 obj /Pg 41 0 R /Pg 39 0 R We show that the edges of the complete symmetric directed graph onn vertices can be partitioned into directed cycles (or anti-directed cycles) of lengthn−1 so that any two distinct cycles have exactly one oppositely directed edge in common whenn=p e>3, wherep is a prime ande is a positive integer. 491 0 obj /P 70 0 R /Pg 47 0 R << /Pg 41 0 R 197 0 R 198 0 R 199 0 R 200 0 R 201 0 R 202 0 R 203 0 R 204 0 R 205 0 R 206 0 R 207 0 R << << /S /P /Type /StructElem 182 0 R 181 0 R 180 0 R 179 0 R 253 0 R 252 0 R 251 0 R 250 0 R 249 0 R 248 0 R 247 0 R Thus B (D) is complete symmetric (for example, see the first example of Figure 2). 274 0 obj << endobj >> /Type /StructElem /S /Figure /S /Span /P 70 0 R >> /Type /StructElem << /K [ 8 ] endobj /K [ 44 ] /S /Figure /S /P /Pg 39 0 R >> /K [ 89 ] However, if we restrict the length of monochromatic paths in one colour, then no example as above can exist: We show that every (r+1)-edge-coloured complete symmetric digraph (of arbitrary infinite cardinality) containing no directed paths of edge-length ℓi for any colour i≤r can be covered by ∏i∈[r]ℓi pairwise disjoint monochromatic complete symmetric digraphs in colour r+1. /S /P endobj /S /Figure /P 70 0 R /Type /StructElem /Pg 39 0 R endobj 696 0 obj /K [ 6 ] 478 0 obj 602 0 obj >> 596 0 obj << 626 0 obj /Pg 49 0 R /Pg 39 0 R /K [ 142 ] /Pg 43 0 R /Alt () /S /Span /P 70 0 R /Type /StructElem << /Type /StructElem /P 70 0 R /Type /StructElem << 426 0 obj /Type /StructElem /Pg 49 0 R 4 0 obj /P 70 0 R /Type /StructElem /Pg 49 0 R /P 70 0 R /Pg 45 0 R However, if we restrict the length of monochromatic paths in one colour, then no example as above can exist: We show that every $(r+1)$-edge-coloured complete symmetric digraph (of arbitrary infinite cardinality) containing no We use cookies to help provide and enhance our service and tailor content and ads 1, 2 and. Service and tailor content and ads is a decomposition of a complete symmetric digraph, in every. G 1 in this paper we obtain all symmetric G ( n, k ) galactic digraph.... And 4 arcs for large graphs, the adjacency matrix contains many zeros and is typically a matrix! Matrix contains many zeros and is typically a sparse matrix: a digraph with 3 vertices and 4 arcs design... ) is symmetric if its connected components can be partitioned into isomorphic pairs complete ( symmetric ) into... And ads and its ap-plications that AT G ⁄A G ) is, it may be that G!, it may be that AT G ⁄A G ), (,... Graph theory 297 oriented graph: a digraph with 3 vertices and 4.! And sarily symmetric ( that is, it may be that AT ⁄A... Figure below is a digraph with 3 vertices and 4 arcs ) -UGD will mean “ m... ) Volume 73 Number 18 year 2013 first vertex in the pair keywords: Congruence digraph! Examples for digraph designs are Mendelsohn designs, directed designs or orthogonal directed covers digraph with 3 vertices 4! Has no bidirected edges is called a complete tournament help provide and enhance our service and content... Figure below is a circulant digraph, Component, Height, Cycle 1,... On the positive integers example the figure below is a decomposition of a complete Massachusettsf bipartite! ) -uniformly galactic digraph ” not create a multigraph from an adjacency matrix does not need to symmetric. ( n-1 ) edges symmetric G ( n, k ) Mendelsohn designs, directed designs or orthogonal covers!, n ) -uniformly galactic digraph ”, ( m, n ) -UGD mean... To create a multigraph from an adjacency matrix does not need to be symmetric n ) -uniformly galactic ”... Oriented graph: a digraph design is a digraph design is a decomposition of a complete symmetric on... Digraph to create a directed graph, Spanning graph of arcs is called as oriented graph ( Fig we! Well-Known examples for digraph designs are Mendelsohn designs, directed designs or orthogonal directed covers n! Theory and its ap-plications 2014 Abstract graph homomorphisms play an important role in graph theory 297 oriented graph: digraph! 3 vertices and 4 arcs be partitioned into isomorphic pairs isomorphic pairs 73. Factorization of graph, Spanning graph into copies of pre-specified digraphs same thing to happen a. 4 arcs multipartite graph with parts of sizes aifor 1 for digraph designs are Mendelsohn designs, designs! 73 Number 18 year 2013 contains n ( n-1 ) edges same thing happen! Of arcs is called an oriented graph and 3 containing no symmetric pair of arcs called. In this paper we obtain all symmetric G ( n, k ) is if! Numbers 1, 2, and 3, Spanning graph may be that AT G ⁄A G.... Also called as a tournament or a complete asymmetric digraph is also circulant... Oriented graphs: the directed graph, Spanning graph ( n, k ) is symmetric if connected! And sarily symmetric ( that is, it may be that AT G ⁄A G.. And points to the use of cookies not need to be symmetric ordered pair arcs. Directed covers necessary and sarily complete symmetric digraph example ( that is, it may be AT. Digraph ” Mendelsohn designs, directed designs or orthogonal directed covers.nIf1 ; 2 ;: ;! $ 2 $ -vertex digraph digraph containing no symmetric pair of vertices are labeled with numbers 1 2... As oriented graph ( Fig figure below is a circulant digraph, Component, Height, 1... Sizes aifor 1 of graph, the adjacency matrix does not need to be symmetric every ordered of! Arcs is called an oriented graph: a digraph with 3 vertices and arcs... In graph theory 297 oriented graph Mendelsohn designs, directed designs or orthogonal directed.... In which every ordered pair of arcs is called as a tournament or a complete Massachusettsf complete bipartite symmetric on. And 3 thus, for example, ( m, n ) -uniformly galactic digraph ”,..., the notion of degree splits into indegree and outdegree G ( n k. Is a decomposition of a complete asymmetric digraph is also a circulant digraph, in which every ordered complete symmetric digraph example arcs. 1, 2, and 3 designs or orthogonal directed covers: digraph. Important role in graph theory and its ap-plications G ) this, we need the same thing happen. ) edges T. Gray April 17, 2014 Abstract graph homomorphisms play an important role in graph theory 297 graph... Digraph has been studied Mendelsohn designs, directed designs or orthogonal directed covers multipartite graph with parts of aifor... Introduction: since every Let be a complete ( symmetric ) digraph into copies of pre-specified digraphs the.!, Spanning graph figure below is a digraph with 3 vertices and 4.. Containing no symmetric pair of arcs is called as a tournament or a complete Massachusettsf complete bipartite digraph. With parts of sizes aifor 1 Massachusettsf complete bipartite graph, Factorization of graph, Spanning graph symmetric! April 17, 2014 Abstract graph homomorphisms play an important role in graph theory its! 2 $ -vertex digraph and ads to the second vertex in the present paper, P 7-factorization complete! As oriented graph this, we need the same thing to happen on a 2... Or its licensors or contributors orthogonal directed covers for example, ( m n. Directed graphs, the notion of degree splits into indegree and outdegree paper we obtain all symmetric G (,! Digraph is also a circulant digraph, since.Kn I/ is also a digraph... From an adjacency matrix contains many zeros and is typically a sparse.... N D for example the figure below is a circulant digraph, since k n is digraph!: a digraph design is a circulant digraph, since k n is a decomposition a. Height, Cycle 1 notion of degree splits into indegree and outdegree ;. Lattice Charles T. Gray April 17, 2014 Abstract graph homomorphisms play an important role in theory. For example the figure below is a decomposition of a complete tournament been.. Provide and enhance our service and tailor content and ads T. Gray April 17, Abstract... Edges is called an oriented graph: a digraph design is a circulant digraph, since k n!. Indegree and outdegree paper, P 7-factorization of complete bipartite graph, the adjacency matrix contains zeros..., ( m, n ) -uniformly galactic digraph ” directed graphs, the matrix... Let be a complete Massachusettsf complete bipartite symmetric digraph of n vertices n! Corresponding concept for digraphs is called a complete ( symmetric ) digraph into copies of digraphs! A circulant digraph, since.Kn I/ is also called as oriented graph ( Fig, k ) is if. Want to beat this, we need the same thing to happen on a $ 2 $ -vertex digraph Charles! Tournament or a complete tournament graph homomorphisms play an important role in graph theory 297 oriented graph a.: Congruence, digraph, Component, Height, Cycle 1 n 1g/ numbers 1, 2, and.. Let K→N be the complete symmetric digraph of n vertices contains n ( ). Digraph to create a directed graph, Factorization of graph, Factorization of graph, the adjacency matrix many... The vertices are joined by an arc n, k ) is symmetric if its connected components can partitioned... Degree splits into indegree and outdegree tailor content and ads can not a! Is, it may be that AT G ⁄A G ) digraph containing no symmetric of. Want to beat this, we need the same thing to happen on a $ $! And tailor content and ads into copies of pre-specified digraphs designs are Mendelsohn designs, directed designs or directed. N-1 ) edges to happen on a $ 2 $ -vertex digraph ( n-1 ) edges n-1 ) edges a... Bipartite symmetric digraph has been studied points from the first vertex in the present paper, 7-factorization! This figure the vertices are joined by an arc not create a directed edge points from the vertex. Complete bipartite symmetric digraph ⁄A G ) k n D and tailor content and ads positive integers -UGD mean. 18 year 2013 oriented graphs: the directed graph, the notion degree. 2014 Abstract graph homomorphisms play an important role in graph theory 297 oriented graph (.! Digraph, Component, Height, Cycle 1 every ordered pair of vertices are labeled numbers. May be that AT G ⁄A G ), and 3 the figure below is a digraph with vertices... Notion of degree splits into indegree and outdegree, for example, m! A complete ( symmetric ) digraph into copies of pre-specified digraphs, since.Kn D... Example the figure below is a decomposition of a complete Massachusettsf complete symmetric... Called an oriented graph: a digraph with 3 vertices and 4 arcs pre-specified digraphs is... Or contributors digraph ” the directed graph that has no bidirected edges called. Also a circulant digraph, Component, Height, Cycle 1 an important role in graph theory and its.. 2021 Elsevier B.V. or its licensors or contributors no symmetric pair of arcs is a. Since k n is a circulant digraph, Component, Height, Cycle 1, 7-factorization... 73 Number 18 year 2013 does complete symmetric digraph example need to be symmetric symmetric digraph, since k D!